Structural insights into lipoprotein N-acylation by Escherichia coli apolipoprotein N-acyltransferase.
نویسندگان
چکیده
Gram-negative bacteria express a diverse array of lipoproteins that are essential for various aspects of cell growth and virulence, including nutrient uptake, signal transduction, adhesion, conjugation, sporulation, and outer membrane protein folding. Lipoprotein maturation requires the sequential activity of three enzymes that are embedded in the cytoplasmic membrane. First, phosphatidylglycerol:prolipoprotein diacylglyceryl transferase (Lgt) recognizes a conserved lipobox motif within the prolipoprotein signal sequence and catalyzes the addition of diacylglycerol to an invariant cysteine. The signal sequence is then cleaved by signal peptidase II (LspA) to give an N-terminal S-diacylglyceryl cysteine. Finally, apolipoprotein N-acyltransferase (Lnt) catalyzes the transfer of the sn-1-acyl chain of phosphatidylethanolamine to this N-terminal cysteine, generating a mature, triacylated lipoprotein. Although structural studies of Lgt and LspA have yielded significant mechanistic insights into this essential biosynthetic pathway, the structure of Lnt has remained elusive. Here, we present crystal structures of wild-type and an active-site mutant of Escherichia coli Lnt. The structures reveal a monomeric eight-transmembrane helix fold that supports a periplasmic carbon-nitrogen hydrolase domain containing a Cys-Glu-Lys catalytic triad. Two lipids are bound at the active site in the structures, and we propose a putative phosphate recognition site where a chloride ion is coordinated near the active site. Based on these structures and complementary cell-based, biochemical, and molecular dynamics approaches, we propose a mechanism for substrate engagement and catalysis by E. coli Lnt.
منابع مشابه
Phosphatidylethanolamine is not essential for the N-acylation of apolipoprotein in Escherichia coli.
It has been postulated that the N-acyl fatty acid attached to the amino terminus of the major Escherichia coli lipoprotein is derived from the fatty acid at the 1-position of phosphatidylethanolamine (PtdEtn) (Jackowski, S., and Rock, C.O. (1986) J. Biol. Chem. 261, 11328-11333). To ascertain the role of PtdEtn in the conversion of apolipoprotein to the mature lipoprotein, the lipoprotein from ...
متن کاملOverexpression of LolCDE allows deletion of the Escherichia coli gene encoding apolipoprotein N-acyltransferase.
Bacterial lipoproteins represent a subset of membrane-associated proteins that are covalently modified with lipids at the N-terminal cysteine. The final step of lipoprotein modification, N-acylation of apolipoproteins, is mediated by apolipoprotein N-acyltransferase (Lnt). Examinations with reconstituted proteoliposomes and a conditional mutant previously indicated that N-acylation of lipoprote...
متن کاملStructural insights into the mechanism of the membrane integral N-acyltransferase step in bacterial lipoprotein synthesis
Lipoproteins serve essential roles in the bacterial cell envelope. The posttranslational modification pathway leading to lipoprotein synthesis involves three enzymes. All are potential targets for the development of new antibiotics. Here we report the crystal structure of the last enzyme in the pathway, apolipoprotein N-acyltransferase, Lnt, responsible for adding a third acyl chain to the lipo...
متن کاملKinetics and phospholipid specificity of apolipoprotein N-acyltransferase.
The enzyme apolipoprotein N-acyltransferase (Lnt) is an integral membrane protein that catalyzes the last step in the post-translational modification of bacterial lipoproteins. Lnt undergoes covalent modification in the presence of phospholipids resulting in a thioester acyl-enzyme intermediate. It then transfers the acyl chain to the α-amino group of the N-terminal diacylglyceryl-modified cyst...
متن کاملThe ppm Operon Is Essential for Acylation and Glycosylation of Lipoproteins in Corynebacterium glutamicum
BACKGROUND Due to their contribution to bacterial virulence, lipoproteins and members of the lipoprotein biogenesis pathway represent potent drug targets. Following translocation across the inner membrane, lipoprotein precursors are acylated by lipoprotein diacylglycerol transferase (Lgt), cleaved off their signal peptides by lipoprotein signal peptidase (Lsp) and, in Gram-negative bacteria, fu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 114 30 شماره
صفحات -
تاریخ انتشار 2017